Worker’s physical fatigue classification using neural networks
نویسندگان
چکیده
Physical fatigue is not only an indication of the user’s physical condition and/or need for sleep or rest, but can also be a significant symptom various diseases. This affects performance workers in jobs that involve some continuous activity, and cause large proportion accidents at work. The commonly measured by perceived exertion (RPE). Many previous studies have attempted to continuously monitor order detect level prevent these accidents, most used invasive sensors are difficult place worker from performing their tasks correctly. Other works use activity measurement such as accelerometers, amount information obtained analyse extract characteristics each state. In this work, we dataset contains data inertial several activities during working day, labelled every 10 min based on using questionnaires Borg scale. Applying Machine Learning techniques, design, develop test system neural network capable classifying variation caused collected min; purpose, feature extraction performed after time decomposition done with Discrete Wavelet Transform (DWT). results show proposed has accuracy higher than 92% all cases, being viable its application scenario.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Material Classification using Neural Networks
The recognition and classification of the diversity of materials that exist in the environment around us are a key visual competence that computer vision systems focus on in recent years. Understanding the identification of materials in distinct images involves a deep process that has made usage of the recent progress in neural networks which has brought the potential to train architectures to ...
متن کاملDocument Classification using Neural Networks
The paper starts with the need for classification. Then the reasons why neural networks are suitable for document classification are explained. The paper continues with the details of the most commonly used topologically organized network model proposed by Kohonen (1982), referred to as the self-organizing map (SOM). The general idea proposed is to display the contents of a document library by ...
متن کاملProtein Classification Using Neural Networks
We have recently described a method based on Artificial Neural Networks to cluster protein sequences into families. The network was trained with Kohonen's unsupervised-learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of the proteins. We show here the application of that method to classify 1758 protein sequences, using as inputs a limited number of prin...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems With Applications
سال: 2022
ISSN: ['1873-6793', '0957-4174']
DOI: https://doi.org/10.1016/j.eswa.2022.116784